Interfaces For analogue signals

Туре

Functions	For Pt 100 probes		Voltage/current			
Width (mm)	22.5		29	16.5	22.5	
Characteristics	2-wire connection	3-wire connection	4-wire connection	Non insulated	Triple insulated	
Input signal	Temperature 0100 °C 0500 °C	Temperature - 100 + 100 °C - 40 + 100 °C 0100 °C 0200 °C 0500 °C	Temperature - 100 + 100 °C 0100 °C 0500 °C	010 V 020 mA 420 mA	± 10 V 010 V 020 mA 420 mA	
Output signal	010 V 020 mA 420 mA			010 V 020 mA 420 mA	± 10 V 010 V 020 mA 420 mA	
Cabling	Screw terminals					
References	ABA-6PT2	ABA-6PT3	ABA-6PT4	АВА-6ТА рр А	АВА-6ТАррВ	
Page	14005/2			14006/2		

150 Ver2.00-FN fm/2

Schneider Electric

Interfaces For analogue signals Transmitters for Pt 100 probes

ABA-6PT transmitters for Pt 100 probes are in the form of compact modules, and are available in 2 widths, 22.5 and 29 mm.

They are designed for interfacing Pt 100 type temperature measurement probes, whose resistance varies with the temperature. The characteristics of these probes are defined in standards DIN 43760 and IEC 751.

The transmitters supply power to the probes, process the signal and produce a standard signal (voltage or current) which can be transmitted remotely and used by a processor (PLC; computer; measurement station; regulator, etc).

The ABA-6PT range covers 5 temperature ranges ± 100 °C ; -40 + 40 °C ; 0-100 °C ; 0-200 °C ; 0-500 °C.

Composition

The ABA-6PT range comprises 3 families :

2-wire measurement transmitters

These ABA-6PT2 interfaces are designed for applications where the distance between the probe and the interface is very short (2 to 3 m maximum) and where very precise measurement is not required.

3-wire measurement transmitters

These ABA-6PT3 interfaces are designed for applications where the distance between the probe and the interface is greater and precise measurement is required. The interface corrects measurement errors introduced by the resistance of the cables connecting the probe.

4-wire transmitters

These ABA-6PT4 interfaces are designed for applications where there is a considerable distance between the probe and the interface, and precise measurement is required : the 4-wire design eliminates measurement errors caused by the resistance of the cables connecting the probe.

haracteristics : age 14005/3 Compatibility page 14005/4

page 14005/5

Dimensions : page 14005/5

Characteristics

Interfaces For analogue signals Transmitters for Pt 100 probes

Environment					
Conforming to stan	ndards	IEC 947-1; VDE 0110 b			
Degree of protectio	on	Conforming to IEC 529 (Prot	tection against direct contact)		IP 20
Protective treatmer	nt				"TC"
Flame resistance		Conforming to IEC 695-2-1	Incandescent wire	°C	850
Shock resistance		Conforming to IEC 68-2-27	Semi-sinusoidal waves 11 ms	gn	50
Vibration resistance	e	Conforming to IEC 68-2-6	1055 Hz	gn	5
Resistance to elect discharges	rostatic	Conforming to IEC 801-2	Level 3	kV	8
Resistance to rapid	transients	Conforming to IEC 801-4 Level 3	On power supply On I/O	kV kV	2 1
Resistance to shoc	k waves	Conforming to IEC 255-4	Waveform 1.2/50 µs; 0.5 J	kV	0.5
Cross-sections whi	ich may	Flexible cable, no cable end	1-wire	mm ²	0.52.5
be connected		Flexible cable with cable end	1-wire 2-wire	mm ² mm ²	0.222.5 ≤ 1.5
		Rigid cable	1-wire	mm²	0.54
Operating position		Any			
Ambient air temper around the device	rature	Operation	Mounted vertically, touching Devices 2 cm apart	℃ ℃	050 060
	Sto			°C	- 40+ 85
Insulation voltage		Terminals/fixing rails		kV	2
Installation categor	ry	Conforming to IEC 947-1			11
Degree of pollution	1	Conforming to IEC 947-1			2
Safety		If input cut or short-circuited	1	-	
Mounting		Standard rails	714		
Special chara	acteristics				
Power supply		Supply voltage		v	24 ± 20 % including ripple
		Maximum voltage without d	amage	V	± 30
		Maximum current		mA mA	20 (voltage output) 32 (current voltage)
		Built-in protection			Reversed polarity
Input		Type of probe Measurement current		mA	Conforming to standards IEC 751 ; DIN 43 760 2
		Filtering Passband		Hz	LRC filter 1000
		Maximum voltage in commo	on mode	۷	± 15
		Maximum voltage in serial r Maximum resistance of pro		V mΩ	± 15 2-wire : 200
Output	Voltage	Range		v	0-10
Julpul	vollage	Minimum load impedance		v kΩ	100
		Built-in protection Maximum voltage in serial r	mode	v	Reversed polarity and short-circuits ± 15
	Current	Range Maximum load impedance		mA Ω	0-20 ; 4-20 500
		Built-in protection			Reversed polarity and short-circuits
		Maximum voltage in serial r	node	V	± 15

Presentation : page 14005/2

References : page 14005/5

 %
 ± 0.2 full scale

 %
 ± 0.6 full scale

 °K/Ω
 + 2.5

Dimensions : page 14005/5

 Measurement
 Error at 20 °C (for 1 MΩ load on voltage output)

 Error at 60 °C
 2-wire line error coefficient

Compatibility page 14005/4

Interfaces For analogue signals Transmitters for Pt 100 probes

Compatibility with PLCs and AB2-MT system

Analogue input modules												
PLC							TSX 17 micro-PLC		AB2 system			
	Threshol	Threshold detector A			Analogue input modules			Analogue modules		Module		
	TSX AD	T201		TSX AE	M411/AE	M811/AE	//821	TSX AEG4110	TSX AEG4111	AB2- MT2814	AB2- MT2021	
PLC input range	0-10 V	4-20 mA	0-20 mA	± 10 V	0-10 V	4-20 mA	0-20 mA	± 10 V	4-20 mA	4-20 mA	0-10 V	4-20 mA
Transmitter												
ABA-6PT p 1p								(1)				
ABA-6PT p 2p												
АВА-6РТр3р												
	(1) limited	to 0 to 10) V									
		Compatib	le		Not comp	atible or n	ot applica	ble				

Other compatible products

ABA-6PT modules are compatible with all products with analogue inputs which conform to standard IEC 381.

Connection according to the type of cable used

 $\label{eq:RL1} \begin{array}{l} \mathsf{RL1} = \mathsf{RL2} = \mathsf{RL3} \\ \text{Where } \mathsf{RL1} + \mathsf{RL3} \leq 200 \Omega \end{array}$

Cabling for probes

To avoid disrupting the Pt 100 output impedance measurement, it is advisable to take some precautions when connecting the device.

Type of cables : D

- Two-wire cabling : the impedance of the cables can affect the measurement. The cables must have a minimum cross section of 0.22 mm² and their length must be limited to a few metres. Using a screened twisted pair avoids any parasitic voltage.

- Three-wire cabling : three-wire screened twisted conductors should be used

- Four-wire cabling : a double twisted screened pair cable should be used (one pair for the current power supply, one pair for the measurement).

Cable routing : D

- The measurement wires should be kept separate from the discrete I/O cables (especially those of relay outputs) and power cables.

- Parallel routing should be avoided (there should be at least 20 cm between cables), and intersections should be made at right angles.

- In the event of probes being close together they can be connected to the transmitter using multipair cables as these are "current" circuits. However signals of a different type and/or those which have another earth reference should not be connected to these cables. In addition, each probe must be connected to one or two dedicated pairs depending to the type of connection. The same pair must not be used to transmit the measurement current to two probes, as this would alter the measurements.

p Connection of the screening : as a general rule it is recommended that the screen is connected to earth as close as possible to the Pt 100 probe.

Cabling Pt 100 probes

The principles of analogue measurement must be observed, in particular.

- p Screened twisted pairs should be used, minimum cross-section 0.22 mm². Only circuits with the same earth reference should be connected in the p same multipair cable.
- The measurement cables should be kept separate from the discrete I/O cables (especially those of relay outputs) and power cables.
- Parallel routing should be avoided (there should be at least 20 cm between cables) and intersections should be made at right angles.
- Connect the screen to the earth of the receiver component. Refer to the setting up instructions for the product.

Characteristics : page 14005/3 sentation e 14005/2 Dimensions page 14005/5 References : page 14005/5 Telemecanique

References, dimensions

Interfaces

For analogue signals Transmitters for Pt100 probes

ABA-6PT231

ABA-6PT410

Type of connection	Temperature range	Output signal	Reference	Weight kg
2-wire	0+ 100 °C	<u>0-10 V</u>	ABA-6PT211	0.060
		<u>4-20 mA</u>	ABA-6PT221	0.060
		0-20 mA	ABA-6PT231	0.060
	0+ 500 °C	<u>0-10</u> V	ABA-6PT212	0.060
		<u>4-20 mA</u>	ABA-6PT222	0.060
		0-20 mA	ABA-6PT232	0.060
3-wire	- 100+ 100 °C	<u>0-10</u> V	ABA-6PT310	0.060
		<u>4-20 mA</u>	ABA-6PT320	0.060
		0-20 mA	ABA-6PT330	0.060
	- 40+ 40 °C	4-20 mA	ABA-6PT324	0.060
	0+ 100 °C	<u>0-10</u> V	ABA-6PT311	0.060
		<u>4-20 mA</u>	ABA-6PT321	0.060
		0-20 mA	ABA-6PT331	0.060
	0+ 200 °C	4-20 mA	ABA-6PT323	0.060
	0+ 500 °C	<u>0</u> -10 V	ABA-6PT312	0.060
		<u>4-20 mA</u>	ABA-6PT322	0.060
		0-20 mA	ABA-6PT332	0.060
4-wire	- 100+ 100 °C	0-10 V	ABA-6PT410	0.070
	0+ 100 °C	0-10 V	ABA-6PT411	0.070
		4-20 mA	ABA-6PT421	0.070
	0+ 500 °C	0-10 V	ABA-6PT412	0.070

Dimensions

АВА-6РТ2**рр** АВА-6РТ3**рр**

ABA-6PT4**pp**

Presentation : page 14005/2 Characteristics : page 14005/3

Compatibility : page 14005/4

Schneider Electric

ctric

Telemecanique

14005 Ver4.00-FN.fm

Presentation

Interfaces For analogue signals Analogue voltage/current transmitters

ABA-6TA analogue transmitters are supplied in the form of compact modules, and are available in 2 widths, 16.5 and 22.5 mm.

In an automated control and monitoring system, these interfaces provide various functions, including :

- adapting signals sent from sensors to make them compatible with the receiving equipment (regulator ; PLC ; measurement station, etc),

- adapting output signals (setpoints) sent from processing units (PLCs; PCs; etc) to preactuators (speed controllers; regulators; progressive valves, etc),

- increasing the transmission distance and providing good immunity against interference (transforming a voltage signal to a current signal),

- electrical separation between 2 components,

- electrical separation between signals and the power source making it possible to create "floating voltage" assemblies and preventing the generation of transient leakage currents.

The products are characterized by a single 24 V C power supply; a high level of precision and a high passband of up to 100 Hz which is suitable for most industrial process applications.

Composition

The ABA-6TA range comprises 2 families :

Non-isolated transmitters

These interfaces are designed for applications where electrical isolation between the input and the output is not required.

Isolated transmitters

These interfaces are designed for applications where electrical isolation between the transmitting and receiving equipment is necessary.

They provide isolation both between the signals themselves and between the signals and the 24 V C interface supply.

Selection guide, characteristics : pages 14006/3 and 14006/4

Compatibility page 14006/5 References, dimensions : page 14006/6

Interfaces For analogue signals Analogue voltage/current transmitters

Electrical	Analogue signals				
isolation	Input (transmitter)	Output (receiver)			
		± 10 V	0-10 V	4-20 mA	0-20 mA
Without	0-10 V				
	4-20 mA				
	0-20 mA				
Vith	± 10 V				
	0-10 V		(1)		
	4-20 mA		(2)		
	0-20 mA				

Environment

Conforming to standards	IEC 947-1; VDE 0110b			
Product approvals				-
Degree of protection	Conforming to IEC 529 (pro	tection against direct contact)		IP XXB
Protective treatment				"TC"
Flame resistance	Conforming to IEC 695-2-1	Incandescent wire	°C	850
Shock resistance	Conforming to IEC 68-2-27	Semi-sinusoidal waves 11 ms	gn	50
Vibration resistance	Conforming to IEC 68-2-6	1055 Hz	gn	5
Resistance to electrostatic discharges	Conforming to IEC 801-2	Level 3	kV	8
Resistance to rapid transients	Conforming to IEC 801-4	On power supply	kV	2
	Level 3	On I/O	kV	1
Resistance to shock waves	Conforming to IEC 255-4	Waveforms 1.2/50 µs ; 0.5 J	kV	0.5
Cross-sections which	Flexible cable, no cable end	1-wire	mm²	0.52.5
can be connected	Flexible cable with cable end			0.222.5
		2-wire	mm ²	≤ 1.5
	Rigid cable	1-wire	mm ²	0.54
Operating position	Any			
Ambient air temperature	Operation	Mounted vertically, touching	°C	050
around the device		Devices 2 cm apart	°C	060
	For storage		°C	- 40+ 85
Insulation voltage	Terminals/fixing rails		kV	2
Installation category	Conforming to IEC 947-1			П
Degree of pollution	Conforming to IEC 947-1			2
Mounting	Standard rails	714		
Presentation : page 14006/2	Compatibility : page 14006/5	References, dimensions : page 14006/6		emes: • 14006/7

Schneider Electric

Interfaces For analogue signals Analogue voltage/current transmitters

Type of interface				АВА-6ТА рр А	АВА-6ТА рр В
Supply		Supply voltage	v	24 ± 20 % including ripple	24 ± 20 % including ripple
		Maximum voltage without damage	v	± 30	± 30
	Maximum current	Voltage output	mA	27	102/73/57
	19/24/29 V	Current output (20)	mA	42	117/88/72
	10/2 1/20 1	Built-in protection		Reversed polarity	Reversed polarity
nput	Voltage	Range	v	0 - 10	0 - 10 ; - 10, + 10
	i ag	Filtering		LC filter	LC filter
		Passband	Hz	100	100
		Attenuation (F > 100 Hz)	%/kHz	1	1
		Maximum voltage in common mode	v	_	± 15
		Maximum voltage in serial mode	v	± 60	± 60
		d.c. input impedance	kΩ	≥ 200	≥ 200
		Built-in protection		Reversed polarity	Reversed polarity
	Current	Range	mA	0 - 20 ; 4 - 20	0 - 20 ; 4 - 20
		Filtering		LC filter	LC filter
		Passband	Hz	100	100
		Maximum voltage in common mode	v	_	± 15
		Maximum voltage in serial mode	V	3.5	3.5
		d.c. input impedance	Ω	50	50
		Built-in protection		Reversed polarity	Reversed polarity
Dutput	Voltage	Range	v	0 - 10	0 - 10 ; - 10, + 10
		Maximum voltage in common mode Maximum voltage in serial mode	V V	- ± 60	630 ± 60
		d.c. output impedance Load impedance	Ω kΩ	100 ≥ 2	100 ≥ 2
		Error introduced by the load	V	Us = U - Is x 100 Ω	Us = U - Is x 100 Ω
		Residual ripple		-	30 mV ; 40 kHz
		Built-in protection		Reversed polarity	Reversed polarity
		Built-in protection		Short-circuits	Short-circuits
				Overvoltages	Overvoltages
	Current	Range	mA	0 - 20 ; 4 - 20	0 - 20 ; 4 - 20
	Current			0 20,1 20	
		Maximum voltage in common mode Maximum voltage in serial mode	V V	- 3.5	630 3.5
				_	_
		d.c. output impedance Load impedance	<u>ΜΩ</u>	5 ≤ 500	5 ≤ 500
		Residual ripple		_	30 mV ; 40 kHz
			-		
		Built-in protection		Reversed polarity Short-circuits	Reversed polarity Short-circuits
				Overvoltages	Overvoltages
ransfer		Error at 20 °C	%	± 0.2 full scale	± 0.1 full scale
with 100 kΩ load o oltage" output)	on	Error on 0 - 60 °C range	%	± 0.8 full scale	± 0.9 full scale
J - T - 7		Temperature error coefficient	%/°K	± 0.015 full scale	± 0.02 full scale
solation		I/O	kV	-	1.5
		Input and output/supply	kV	_	1.5

Interfaces For analogue signals Analogue voltage/current transmitters

Compatibility with PLCs and AB2-MT system

Transmitter	-	odular Pl	-					TSX 17 Communication inte micro-PLC system				nterface	
	Thresho	d detector		Analogue	e input mo	dule		тѕх	1				
	TSX AD	TSX ADT201			TSX AEM411/AEM811/AEM821				TSX AEG4111	AB2- MT2814	AB2-MT2021		
	0-10 V	0-20 mA	4-20 mA	± 10 V	0-20 mA	4-20 mA	0-10 V	± 10 V	4-20 mA	4-20 mA	0-10 V	4-20 m	
ABA-6TAp1p								(2)					
ABA-6TAp2p													
АВА-6ТАр3р			(3)			(3)			(3)	(3)		(3)	
ABA-6TA00B	(1)										(1)		
Analogue output modules													
Transmitter	-	odular Pl	-				TSX 17 micro-PLC						
	Analogu	e output m	lodule					TSX	тѕх	тѕх			
					TSX AS	R200					TOV AC	C 2004	
	TSX AS	1200		1		11200		A31.401	A3N402	ASG2000	15X AS	62001	
	TSX AS ± 10 V		4-20 mA	0-10 V			4-20 mA	± 10 V			4-20 m/		
ABA-6TA1 pp			4-20 mA	0-10 V			4-20 mA						
••			4-20 mA	0-10 V	± 10 V		4-20 mA	± 10 V		±10 V			
АВА-6ТА2 рр			4-20 mA	0-10 V	± 10 V		4-20 mA	± 10 V		±10 V			
ABA-6TA1pp ABA-6TA2pp ABA-6TA31p ABA-6TA3pB			4-20 mA	0-10 V	± 10 V		4-20 mA	± 10 V		±10 V			

Speed reference input

Transmitter	Altivar			Rectiva							Gradipak		
		ATV15-1 2, ATV45		RTV04,	RTV54			DTV74			LH1		
		ĺ						RTV74,					
	0-10 V	0-20mA	4-20mA	0-10 V	<u>± 10 V</u>	0-20mA	4-20mA	0-10 V	0-20mA	4-20mA	0-10 V	0-20mA	4-20m
ABA-6TAp1p													
АВА-6ТАр2р													
АВА-6ТАр3р			(3)				(3)			(3)			(3)
ABA-6TA00B	(1)							(1)			(1)		
Analogue output													
Transmitter	Altivar	5 2, ATV45	21/	Rectivar RTV74, RTV84									
		ĺ		± 10 V									
ABA-6TAp1p			1	1									
ABA-6TAp2p													
АВА-6ТАр3р													
ABA-6TA00B													
	(1) With (2) Limite (3) With	ed to 0 to	10 V		le								
		Compati	ble		Not c	ompatible	e or not a	pplicable	1				
Presentation : page 14006/2	Selectiong	uide, stics :		pages 14	1006/3 and '	4006/4	Ref	erences,	dimensic	ns :	Scheme	s :	

page 14006/2 Schneider Electric

References, Dimensions

Interfaces

For analogue signals Analogue voltage/current transmitters

	Electrical isolation	Input signal	Output signal	Reference	Weight kg
	Without	0-10 V	0-20 mA	ABA-6TA13A	0.065
			4-20 mA	ABA-6TA12A	0.065
		4-20 mA	0-10 V	ABA-6TA21A	0.065
ABA-6TA21A		0-20 mA	0-10 V	ABA-6TA31A	0.070
	With	±10 V	± 10 V	ABA-6TA00B	0.065
		0-10 V	0-20 mA	ABA-6TA13B	0.065
			4-20 mA	ABA-6TA12B	0.065
			0-10 V	ABA-6TA21B	0.065
			0-20 mA	ABA-6TA23B	0.065
		0-20 mA	0-10 V	ABA-6TA31B	0.070
ABA-6TA31B			0-20 mA	ABA-6TA33B	0.070
			4-20 mA	ABA-6TA32B	0.070
Dimensions					
АВА-6ТА рр А			АВА-6ТА рр В		
		60,6			
АВА-6ТАРРА		0. 33	ABA-6TAppB		

Presentation : page 14006/2 Selection guide, characteristics : pages 14006/3 and 14006/4

Compatibility : page 14006/5

90,5

95

Schemes : page 14006/7

1006 Ver4.00-FN fm/6

90,5

95

Schneider Electric

Interfaces For analogue signals

Isolated transmitter

ABA-6TAppB

Analogue voltage/current transmitters

Connection of screen

- The principles of analogue measurement must be observed, in particular :
 p Screened twisted pairs should be used, minimum cross-section 0.22 mm².
 p Only circuits with the same earth reference should be connected in the same multipair cable.
 p The measurement cables should be kept separate from the discrete I/O cables (especially those of relay outputs) and power cables.
 p Parallel routing should be avoided (there should be at least 20 cm between cables) and intersections should be at right angles.
 p Connect the screen to the earth of the receiver component.

Preser	ntation
page 1	4006/2

Compatibility : page 14006/5

Interfaces For analogue signals Analogue/digital converters

ABA-6AD analogue/digital converters are supplied in the form of compact modules, 22.5 mm wide.

The function of analogue/digital converters is to transform a standard analogue signal (0-10 V; 0-20 mA; 4-20 mA) into a digital signal which is coded on discrete digital outputs and can be directly used by the discrete inputs of a processor (PLC; industrial computer; etc).

These products are characterized by a very short conversion time (10 or 20 µs) and good linearity.

Composition

The ABA-6AD range comprises 2 families of products :

• 8 bit analogue/digital converters

These interfaces have an 8 bit resolution (the signal is coded in binary on 8 discrete outputs). They are designed for applications which only require limited precision and resolution.

The analogue input is referenced to the 0 V of the module supply.

Input range :

0-10 V 0-20 mA ; 4-20 mA

• 12 bit analogue/digital converters

These interfaces have a 12 bit resolution (the signal is coded in binary on 12 discrete outputs). They are designed for applications which require a high level of precision and high resolution.

The analogue input is differential, which provides improved immunity to interference.

Input range :

0-10 V 0-20 mA

 Section of digital signals via pre-formed cable connector type HE10-14 poles (ABC-6HE14F). Cabling interface ABE-6HE14M is used to connect a connector to screw "clamp type" terminals.
 Multiplexing is possible with 2 to 4 AD or DA converters on an ABE-6ADA14M sub-base.

Applications

The main use of analogue/digital converters is in simple applications which only require a small number of analogue inputs. They provide a low-cost solution to the acquisition of analogue signals without the use of boards, which are often oversized and inconvenient.

Characteristics :	Compatibility :	References :
page 14007/3	page 14007/4	page 14007/5

Characteristics

Interfaces For analogue signals Analogue/digital converters

Environment

Conforming to standards	IEC 947-1; VDE 0110b			
De une of une to other				10.00
Degree of protection	Conforming to IEC-529 (protection against direct contact)			IP 20 "TC"
Protective treatment				
Flame resistance	Conforming to IEC 696-2-1	Incandescent wire	°C	850
	g	Semi-sinusoidal waves		
Shock resistance	Conforming to IEC 68-2-27	11 ms	gn	50
Vibration resistance	Conforming to IEC 68-2-6	1055 Hz	gn	5
Resistance to electrostatic				
discharges	Conforming to IEC 801-2	Level 2	kV	4
Resistance to rapid transients	Conforming to IEC 801-4	On power supply	kV	2
	Level 3	On I/O	kV	1
Resistance to shock waves	Conforming to IEC 255-4	Waveform 1.2/50 µs ; 0.5 J	kV	0.5
Resistance to shock waves		vaveloini 1.2/30 µ3 , 0.3 3	RV.	0.5
Cross-section which may	Flexible cable. no cable end	1-wire	mm ²	0.52.5
be connected	Flexible cable with cable end	-	mm ²	0.222.5
		2-wire	mm ²	≤ 1.5
	Rigid cable	1-wire	mm ²	0.54
Operating position	Any			
Ambient air temperature	For operation	Mounted vertically, touching	°C	040
around the device		Devices 2 cm apart	°C	050
	For storage		°C	- 40+ 85
Insulation voltage	Terminals/fixing rails		kV	2
Installation category	Conforming to IEC 947-1			
Degree of pollution	Conforming to IEC 947-1			2
Mounting	Standard rails	~ 25 Lo		

Specific characteristics

"HOLD" input Discrete digital outputs	Supply voltage (V d.c.) Maximum voltage without damage Maximum current consumed Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection Rated voltage	V ν mA V Hz V KΩ mA Hz V KΩ mA Q MA N N Q N N N N N N N N N N N N N	$\begin{array}{c} 24 \pm 20 \ \% \\ \mbox{Including ripple} \\ \pm \ 30 \\ 50 + \mbox{output current} \\ \hline 0-10 \\ \mbox{LC filter} \\ 20 \ 000 \\ - \\ \hline 60 \\ \ge \ 200 \\ \mbox{Reversed polarity} \\ 0-20 \ ; \ 4-20 \\ \mbox{LC filter} \\ 20 \ 000 \\ - \\ \hline 3.5 \\ 50 \\ \mbox{Reversed polarity} \\ \hline \end{array}$	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{Including ripple} \\ \pm 30 \\ 17 + \text{output current} \\ \hline 0 - 10 \\ \text{LC filter} \\ 400 \\ \pm 15 \\ 60 \\ \geq 200 \\ \text{Reversed polarity} \\ 0 - 20 \\ \text{LC filter} \\ 400 \\ \pm 15 \\ 3.5 \\ 50 \\ \text{Reversed polarity} \end{array}$
Analogue input Voltage Curren 'HOLD" input	Maximum voltage without damage Maximum current consumed Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	V mA V Hz V KΩ mA Hz V KΩ mA Ω	± 30 50 + output current 0-10 LC filter 20 000 - 60 ≥ 200 Reversed polarity 0-20 ; 4-20 LC filter 20 000 - 3.5 50	$\begin{array}{c} \pm 30 \\ 17 + \text{output current} \\ \hline 0.10 \\ \text{LC filter} \\ 400 \\ \pm 15 \\ 60 \\ \geq 200 \\ \text{Reversed polarity} \\ 0.20 \\ \text{LC filter} \\ 400 \\ \pm 15 \\ 3.5 \\ 50 \\ \end{array}$
Analogue input Voltage Curren "HOLD" input Discrete digital outputs	Maximum voltage without damage Maximum current consumed Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	mA V Hz V KΩ mA Hz V KΩ mA Ω	50 + output current 0-10 LC filter 20 000 - 60 ≥ 200 Reversed polarity 0-20 ; 4-20 LC filter 20 000 - 3.5 50	$17 + output current0-10LC filter400± 1560\geq 200Reversed polarity0-20LC filter400± 153.550$
"HOLD" input Discrete digital outputs	Maximum current consumed Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	mA V Hz V KΩ mA Hz V KΩ mA Ω	50 + output current 0-10 LC filter 20 000 - 60 ≥ 200 Reversed polarity 0-20 ; 4-20 LC filter 20 000 - 3.5 50	$17 + output current0-10LC filter400± 1560\geq 200Reversed polarity0-20LC filter400± 153.550$
"HOLD" input Discrete digital outputs	Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	V Hz V V kΩ mA Hz V V V V Ω	0-10 LC filter 20 000 	$\begin{array}{c} 0-10 \\ LC \ filter \\ 400 \\ \pm \ 15 \\ 60 \\ \geq \ 200 \\ Reversed \ polarity \\ 0-20 \\ LC \ filter \\ 400 \\ \pm \ 15 \\ 3.5 \\ 50 \end{array}$
"HOLD" input Discrete digital outputs	Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	Hz V V kΩ mA Hz V V V V	LC filter 20 000 - 60 ≥ 200 Reversed polarity 0-20 ; 4-20 LC filter 20 000 - 3.5 50	LC filter 400 ± 15 60 ≥ 200 Reversed polarity 0-20 LC filter 400 ± 15 3.5 50
	Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	V V kΩ mA Hz V V Ω	20 000 	400 ± 15 60 ≥ 200 Reversed polarity 0-20 LC filter 400 ± 15 3.5 50
"HOLD" input Discrete digital outputs	Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	V V kΩ mA Hz V V Ω	- 60 ≥ 200 Reversed polarity 0-20 ; 4-20 LC filter 20 000 - 3.5 50	$\begin{array}{c} \pm 15\\ 60\\ \geq 200\\ Reversed polarity\\ 0-20\\ LC filter\\ 400\\ \pm 15\\ 3.5\\ 50\\ \end{array}$
"HOLD" input Discrete digital outputs	Maximum voltage in serial mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	V kΩ mA Hz V Ω	60 ≥ 200 Reversed polarity 0-20 ; 4-20 LC filter 20 000 - 3.5 50	60 ≥ 200 Reversed polarity 0-20 LC filter 400 ± 15 3.5 50
"HOLD" input Discrete digital outputs	Maximum voltage in serial mode d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	kΩ mA Hz V V Ω	≥ 200 Reversed polarity 0-20 ; 4-20 LC filter 20 000 - 3.5 50	≥ 200 Reversed polarity 0-20 LC filter 400 ± 15 3.5 50
"HOLD" input Discrete digital outputs	d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	mA Hz V V Ω	Reversed polarity 0-20 ; 4-20 LC filter 20 000 - 3.5 50	Reversed polarity 0-20 LC filter 400 ± 15 3.5 50
"HOLD" input Discrete digital outputs	Built-in protection Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	mA Hz V V Ω	Reversed polarity 0-20 ; 4-20 LC filter 20 000 - 3.5 50	Reversed polarity 0-20 LC filter 400 ± 15 3.5 50
"HOLD" input Discrete digital outputs	Range Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	Hz V V Ω	0-20 ; 4-20 LC filter 20 000 - 3.5 50	0-20 LC filter 400 ± 15 3.5 50
Discrete digital outputs	Filtering Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	Hz V V Ω	LC filter 20 000 - 3.5 50	400 ± 15 3.5 50
Discrete digital outputs	Passband Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	V V Ω	20 000 - 3.5 50	400 ± 15 3.5 50
Discrete digital outputs	Maximum voltage in common mode Maximum voltage in serial mode d.c. input impedance Built-in protection	V V Ω	- 3.5 50	± 15 3.5 50
Discrete digital outputs	Maximum voltage in serial mode d.c. input impedance Built-in protection	Ω	50	3.5 50
Discrete digital outputs	d.c. input impedance Built-in protection	Ω	50	50
Discrete digital outputs	Built-in protection		Reversed polarity	Reversed polarity
Discrete digital outputs				
Discrete digital outputs	Rated voltage			
		V	24	24
	Maximum voltage	V	30	30
	State 1 U \geq ; I \geq	V	18;2 mA	18;2 mA
	State 0 U ≤ ; I ≤	V 	12;1.2 mA	12;1.2 mA
Conversion	Number		8	12
Conversion	Rated voltage	V 	24	24
Conversion	Maximum voltage (0 mA)	V 	V d.c. – 1	V d.c. – 1
Conversion	Maximum current per output	mA	25	25
Conversion	Maximum volt drop	V	4	4
Conversion	Impedance	kΩ	125	125
	Conversion time	μs	10	20
	Non linearity		± 1LSB	± 1/2 LSB
	Maximum error at 20 °C		± 1LSB	± 1LSB
Tempe	ture 0-10 V output	ppm/°K	50	25
error	0-20 mA output	ppm/°K	80	40
coeffici		ppm/°K	90	
Resolu		mV	39	2.441
	0-20 mA output	μV	78.1	4.883
	4-20 mA output	μA	65.5	-
Presentation :	4-20 IIIA 001001	м, ,		

Interfaces For analogue signals Analogue/digital converters

Compatibility with PLCs

ABA-6AD analogue/digital converters are compatible with the discrete signals of:

- Multifunction PLCs fitted with input modules TSX DET812, DET1612, DET3212 or output modules TSX DST882, DST1682, DST2482, DST3292 or DST2472.
 - Basic TSX 17 micro-PLCs :
 - TSX 1722028, 1723428 with relay outputs,
 - TSX 1722012, 1724012 with 24 V transistor outputs,
 - TSX 1723428, 1722012, 1724012 with --- 24 V inputs.
- Discrete I/O extensions for TSX 17 micro-PLCs :
 - Discrete extension blocks :
 - TSX DMF242A, DMF342A with --- 24 V inputs and relay outputs,
 TSX DMF400, DMF401 with --- 24 V inputs and outputs.

 - Discrete extension modules
 - TSX DEF812 with 24 V inputs,
 - TSX DSF612 with --- 24 V outputs.
- Any PLC with discrete inputs conforming to IEC 65A (CO22) class 1, or discrete outputs compatible with class 1 inputs.

Operation

ABA-6AD modules convert analogue signals on command from the processor by means of a sampling signal "Hold", as shown in the diagram below.

This mode of operation enables the discrete outputs on several modules to be connected in parallel to the same discrete inputs on the processor, and thus a simple multiplexing of several analogue inputs.

Operating diagram

The principles of analogue measurement must be observed, in particular :

- screened twisted pairs should be used, minimum cross-section 0.22 mm²,
- only circuits with the same earth reference should be connected in the same multipair cable,

- measurement cables should be kept separate from discrete I/O cables (especially those of relay outputs) and power cables, - parallel routing should be avoided (there should be at least 20 cm between cables) and intersections should be made at right angles.

Cabling digital I/O

Presentation
page 14007/2

They are connected using a ribbon cable fitted with 2 HE10 14-pin female connectors. Cabling interface ABA-6HE14M is used to connect the cable to the screw terminals.

Multiplexing several analogue inputs (circuit diagram with 2 analogue inputs)

References, dimensions, schemes

Interfaces For analogue signals Analogue/digital converters

ABA-6AD81

ABA-6AD123

Digital output	Reference	Weight kg
8 bit	ABA-6AD81	0.065
12 bit	ABA-6AD121	0.065
8 bit	ABA-6AD83	0.065
12 bit	ABA-6AD123	0.065
8 bit	ABA-6AD82	0.065
Sold in lots of	Unit reference	Weight kg
1	ABE-6HE14M	0.075
1	ABF-H14H020	0.008
2	ABC-6HE14F	0.005
1	ABF-C14N050	0.520
1	ABE-6ADA14M	0.150
	output 8 bit 12 bit 8 bit 12 bit 8 bit 12 bit 12 bit 12 bit 12 bit 12 bit 2 1	Output 8 bit ABA-6AD81 12 bit ABA-6AD121 8 bit ABA-6AD83 12 bit ABA-6AD83 12 bit ABA-6AD123 8 bit ABA-6AD123 12 bit ABA-6AD123 12 bit ABA-6AD82 8 bit ABA-6AD82 1 ABA-6AD82 1 ABE-6HE14M 1 ABE-6HE14M 2 ABE-6HE14F 1 ABF-C14N050

Dimensions, schemes

Interfaces For analogue signals Digital/analogue converters

ABA-6DA digital/analogue converters are supplied in the form of compact modules, 22.5 mm wide.

The function of digital/analogue converters is to generate a standard analogue signal (0-10 V ; 0-20 mA) which is sent by a processing unit (PLC, industrial computer, etc.) and coded in binary on the discrete digital outputs connected to the digital inputs of the converter.

These products are characterised by a very short conversion time (20 or 13 µs) and good linearity.

Composition

The ABA-6DA range comprises 2 families of products :

• 8 bit digital/analogue converters

These interfaces have an 8 bit resolution (the signal is coded in binary on 8 discrete inputs). They are designed for applications which only require limited precision and resolution.

The analogue output is referenced to the 0 V of the module supply.

Output range : 0 - 10 V ; ± 10 V, 0 - 20 mA

• 12 bit digital/analogue converters

These interfaces have a 12 bit resolution (the signal is coded in binary on 12 discrete inputs). They are designed for applications which require a high level of precision and high resolution.

Output range : 0 - 10 V ; ± 10 V, 0 - 20 mA

1 Connection of digital (discrete) signals via ribbon cable connector type HE10 14-pole. Cabling interface ABA-6HE14M is used to connect a connector to the screw terminals.

Multiplexing of 2 to 4 digital/analogue converters is possible using baseplate ABE-6ADA14M.

Applications

The main use of digital/analogue converters is in simple applications which only require a small number of analogue outputs. They provide a low cost solution to the generation of analogue signals without the use of boards, which are often oversized and inconvenient.

Compatibility page 14008/4

References : page 14008/5

Characteristics

Interfaces For analogue signals Digital/analogue converters

onforming to standa	rde	IEC 947-1 ; VDE 0110b				
	lus	TEC 947-1, VDE 01100				
oduct certifications						
egree of protection		Conforming to IEC 529 (pro	otection against direct contact)		IP 20	
rotective treatment					"TC"	
		0 () / 150 000 0 (
lame resistance		Conforming to IEC 696-2-1	Semi-sinusoidal waves	°C	850	
hock resistance		Conforming to IEC 68-2-27	11 ms	gn	50	
ibration resistance		Conforming to IEC 68-2-6	1055 Hz	gn	5	
Resistance to electrostatic discharge		Conforming to IEC 801	Level 3	kV	8	
Resistance to rapid transients		Conforming to IEC 801-4		kV	2	
		Level 3	On I/O	kV	1	
esistance to shock v	aves	Conforming to IEC 255-4	Waveform 1.2/50 µs ; 0.5 J	kV	0.5	
ross-sections which		Flexible without cable end		mm ²	0.52.5	
e connected		Flexible with cable end	1 conductor	mm ²	0.222.5	
		0	2 conductors	mm ²	≤ 1.5	
		Solid cable	1 conductor	mm ²	0.54	
perating position		All				
mbient air temperatu	ire	Operation	Mounted vertically, touching	°C	040	
round the device			Devices 2 cm apart	°Č	050	
		Storage		°Č	- 40+ 85	
sulation voltage		Terminals/fixing rails		kV	2	
stallation category		Conforming to IEC 947-1				
egree of pollution		Conforming to IEC 947-1			2	
lounting		Standard rails	~ 25 [2			
	eristics					
Special charact	eristics	Supply voltage		v	8 bit 24 ± 20 % including ripple	12 bit 24 ± 20 %
igital output	eristics	Supply voltage Maximum voltage without	damage	v v		
igital output	eristics	Supply voltage Maximum voltage without Maximum current consum			24 ± 20 % including ripple	24 ± 20 % including ripple
igital output		Maximum voltage without Maximum current consum		V mA	$24 \pm 20 \%$ including ripple ± 30 55	24 ± 20 % including ripple ± 30 70
igital output	Voltage	Maximum voltage without Maximum current consum Range	ed	V	24 ± 20 % including ripple ± 30 55 0 - 10	24 ± 20 % including ripple ± 30 70 0 - 10
igital output		Maximum voltage without Maximum current consum Range Maximum voltage in serial	ed	V mA	$24 \pm 20 \%$ including ripple ± 30 55	24 ± 20 % including ripple ± 30 70
igital output		Maximum voltage without Maximum current consum Range	ed mode	V mA V	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15	24 ± 20 % including ripple ± 30 70 0 - 10 ± 15
igital output		Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance	ed mode	V mA V Ω	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity	24 ± 20 % including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity
		Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance	ed mode	V mA V Ω	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages	$24 \pm 20 \%$ including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity Overvoltages
igital output		Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection	ed mode	V mA V Ω kΩ	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits	$24 \pm 20 \%$ including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits
igital output		Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance	ed mode	V mA V Ω	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages	$24 \pm 20 \%$ including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity Overvoltages
igital output		Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection	ed mode	V mA V Ω kΩ	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits	$24 \pm 20 \%$ including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits
igital output	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection Maximum residual ripple Range Maximum voltage in serial	ed mode	V mA V Ω kΩ mV	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4	$24 \pm 20 \%$ including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4
igital output	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection Maximum residual ripple Range Maximum voltage in serial d.c. output impedance	ed mode mode	V mA V Ω kΩ mV mV mA V MΩ	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm 30 \\ 55 \\ \hline 0 - 10 \\ \pm 15 \\ 100 \\ 100 \\ \hline 100 \\ Reversed polarity \\ Overvoltages \\ Short-circuits \\ 4 \\ \hline 0 - 20 \\ \pm 15 \\ > 5 \end{array}$	$24 \pm 20 \%$ including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5
igital output	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection Maximum residual ripple Range Maximum voltage in serial d.c. output impedance Maximum load impedance	ed mode mode	V mA V Ω kΩ mV mV mA V	$\begin{array}{c} 24 \pm 20 \ \% \\ including ripple \\ \pm 30 \\ 55 \\ \hline \\ 0 - 10 \\ \pm 15 \\ 100 \\ 100 \\ \hline \\ 0 \\ 0 \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ 100 \\ 100 \\ \hline 100 \\ \hline 0 \text{vervoltages} \\ \text{Short-circuits} \\ 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ > 5 \\ 500 \\ \end{array}$
igital output	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection Maximum residual ripple Range Maximum voltage in serial d.c. output impedance	ed mode mode	V mA V Ω kΩ mV mV mA V MΩ	$24 \pm 20 \%$ including ripple ± 30 55 $0 - 10$ ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 $0 - 20$ ± 15 > 5 500 Reversed polarity	$24 \pm 20 \%$ including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity
igital output	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection Maximum residual ripple Range Maximum voltage in serial d.c. output impedance Maximum load impedance	ed mode mode	V mA V Ω kΩ mV mV mA V MΩ	$24 \pm 20 \%$ including ripple ± 30 55 $0 - 10$ ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 $0 - 20$ ± 15 > 5 500 Reversed polarity Overvoltages	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm 30 \\ 70 \\ \hline \\ 0 - 10 \\ \pm 15 \\ 100 \\ 100 \\ 100 \\ \text{Reversed polarity} \\ \text{Overvoltages} \\ \text{Short-circuits} \\ 4 \\ \hline \\ 0 - 20 \\ \pm 15 \\ > 5 \\ 500 \\ \text{Reversed polarity} \\ \text{Overvoltages} \end{array}$
igital output	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection Maximum residual ripple Range Maximum voltage in serial d.c. output impedance Maximum load impedance	ed mode mode	V mA V Ω kΩ mV mV mA V MΩ	$24 \pm 20 \%$ including ripple ± 30 55 $0 - 10$ ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 $0 - 20$ ± 15 > 5 500 Reversed polarity	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm 30 \\ 70 \\ \hline \\ 0 - 10 \\ \pm 15 \\ 100 \\ 100 \\ \hline \\ \text{Reversed polarity} \\ \text{Overvoltages} \\ \text{Short-circuits} \\ 4 \\ \hline \\ 0 - 20 \\ \pm 15 \\ > 5 \\ 500 \\ \hline \\ \text{Reversed polarity} \\ \end{array}$
igital output upply nalogue output	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection Maximum residual ripple Range Maximum voltage in serial d.c. output impedance Maximum load impedance Built-in protection Maximum residual ripple	ed mode mode	V mA V kΩ mV mA V MΩ Ω mV	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm 30 \\ 55 \\ \hline \\ 0 - 10 \\ \pm 15 \\ 100 \\ 100 \\ \hline 100 \\ \hline 100 \\ \hline 100 \\ \hline 100$	$24 \pm 20 \%$ including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity Overvoltages Short-circuits 4
igital output upply nalogue output HOLD" and discrete	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection Maximum residual ripple Range Maximum voltage in serial d.c. output impedance Maximum load impedance Built-in protection Maximum residual ripple Rated voltage	ed mode mode	V mA V Ω kΩ mV mA V MΩ Ω mV V V 	$\begin{array}{r} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm 30 \\ 55 \\ \hline \\ 0 - 10 \\ \pm 15 \\ 100 \\ 100 \\ \hline \\ 15 \\ \hline \\ 15 \\ \hline \\ 5 \\ 500 \\ \hline \\ 15 \\ \hline \\ 5 \\ 500 \\ \hline \\ 15 \\ \hline \\ 5 \\ 500 \\ \hline \\ Reversed polarity \\ \hline \\ Overvoltages \\ \hline \\ 500 \\ \hline \\ Reversed polarity \\ \hline \\ Overvoltages \\ \hline \\ 5 \\ 500 \\ \hline \\ Reversed polarity \\ \hline \\ Overvoltages \\ \hline \\ Short-circuits \\ 4 \\ \hline \\ 24 \\ \hline \end{array}$	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ \hline 100 \\ \hline 100 \\ \hline 100 \\ \hline 0 \text{vervoltages} \\ \text{Short-circuits} \\ \hline 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ \hline 5 \\ 500 \\ \hline \text{Reversed polarity} \\ \hline \text{Overvoltages} \\ \hline \text{Short-circuits} \\ \hline 4 \\ \hline 24 \\ \hline \end{array}$
igital output upply nalogue output HOLD" and discrete	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in seria d.c. output impedance Minimum load impedance Built-in protection Maximum residual ripple Range Maximum voltage in seria d.c. output impedance Maximum load impedance Built-in protection Maximum residual ripple Rated voltage Maximum voltage	ed mode mode	V mA V Ω kΩ mV mA V MΩ Ω mV V V V	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity Overvoltages Short-circuits 4 24 30	$24 \pm 20 \%$ including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity Overvoltages Short-circuits 4 24 30
igital output upply nalogue output HOLD" and discrete	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection Maximum voltage in serial d.c. output impedance Maximum residual ripple Range Maximum voltage in serial d.c. output impedance Maximum load impedance Built-in protection Maximum load impedance Built-in protection Maximum voltage Stated voltage Maximum voltage State 1 U ≥ ; I ≥	ed mode mode	V mA V Ω kΩ mV mA V MΩ Ω mV V V V V	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm 30 \\ 55 \\ \hline \\ 0 - 10 \\ \pm 15 \\ 100 \\ 100 \\ \hline \\ 100 \\$	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ \hline 100 \\ \hline 100 \\ \hline Reversed polarity \\ Overvoltages \\ \hline Short-circuits \\ 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ \hline > 5 \\ \hline 500 \\ \hline Reversed polarity \\ \hline Overvoltages \\ \hline Short-circuits \\ 4 \\ \hline 24 \\ \hline 30 \\ \hline 18/0.4 \\ \end{array}$
igital output upply nalogue output HOLD" and discrete	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in seria d.c. output impedance Minimum load impedance Built-in protection Maximum residual ripple Range Maximum voltage in seria d.c. output impedance Maximum load impedance Built-in protection Maximum residual ripple Rated voltage Maximum voltage	ed mode mode	V mA V Ω kΩ mV mA V MΩ Ω mV V V V	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity Overvoltages Short-circuits 4 24 30	$24 \pm 20 \%$ including ripple ± 30 70 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity Overvoltages Short-circuits 4 24 30
igital output upply nalogue output HOLD" and discrete igital input	Voltage	Maximum voltage without Maximum current consum Range Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protection Maximum voltage in serial d.c. output impedance Maximum residual ripple Range Maximum voltage in serial d.c. output impedance Maximum load impedance Built-in protection Maximum load impedance Built-in protection Maximum voltage Stated voltage Maximum voltage State 1 U ≥ ; I ≥	ed mode	V mA V V kΩ mV mA V MΩ Ω MΩ Ω V mV V T== V/mA V/mA	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm 30 \\ 55 \\ \hline \\ 0 - 10 \\ \pm 15 \\ 100 \\ 100 \\ \hline \\ 100 \\$	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ \hline 100 \\ \hline 100 \\ \hline Reversed polarity \\ Overvoltages \\ \hline Short-circuits \\ 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ \hline 5 \\ \hline 500 \\ \hline Reversed polarity \\ \hline Overvoltages \\ \hline Short-circuits \\ 4 \\ \hline 24 \\ \hline 30 \\ \hline 18/0.4 \\ \end{array}$
igital output upply nalogue output HOLD" and discrete igital input	Voltage	Maximum voltage without Maximum current consumRange Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protectionMaximum residual ripple Range Maximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Built-in protectionMaximum load impedance Suilt-in protectionMaximum voltage State 1 U \geq ; 1 \geq State 0 U \leq ; 1 \leq	ed mode	V mA V Ω kΩ mV mA V MΩ Ω mV V V V V	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity Overvoltages Short-circuits 4 24 24 30 18/0.4 12/0.2	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ \hline 100 \\ \hline 100 \\ \hline 100 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ \hline Short-circuits \\ \hline 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ \hline > 5 \\ \hline 500 \\ \hline \text{Reversed polarity} \\ \hline Overvoltages \\ \hline Short-circuits \\ \hline 4 \\ \hline 24 \\ \hline 30 \\ \hline 18/0.4 \\ \hline 12/0.2 \\ \hline \end{array}$
gital output upply nalogue output HOLD" and discrete igital input	Voltage	Maximum voltage without Maximum current consumRangeMaximum voltage in serial d.c. output impedanceMinimum load impedanceBuilt-in protectionMaximum residual rippleRange Maximum voltage in serial d.c. output impedanceMaximum load impedanceMaximum load impedanceBuilt-in protectionMaximum voltage State 1 U \geq ; I \geq State 0 U \leq ; I \leq Maximum conversion time Non-linearity Maximum error at 20 °C (***********************************	ed mode	V mA V Ω kΩ mV mA V MΩ Ω mV V V V V V V	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity Overvoltages Short-circuits 4 24 30 18/0.4 12/0.2 20 ± 1/2 LSB ± 1/2 LSB ± 1/2 LSB	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ \hline 100 \\ 100 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ Short-circuits \\ \hline 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ \hline 5 \\ 500 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ Short-circuits \\ \hline 4 \\ \hline 24 \\ \hline 30 \\ \hline 18/0.4 \\ \hline 12/0.2 \\ \hline 13 \\ \end{array}$
igital output upply nalogue output HOLD" and discrete igital input	Voltage Current	Maximum voltage without Maximum current consumRange Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protectionMaximum residual ripple Range Maximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage State 1 U \geq ; I \geq State 0 U \leq ; I \leq Maximum conversion time Non-linearity Maximum error at 20 °C (* 0 - 10 V output	ed mode	V mA V Ω kΩ mV mA V MΩ Ω mV V 	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity Overvoltages Short-circuits 4 24 30 18/0.4 12/0.2 20 ± 1/2 LSB ± 0 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ \hline 100 \\ \hline 100 \\ \hline Reversed polarity \\ Overvoltages \\ \hline Short-circuits \\ 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ \hline > 5 \\ \hline 500 \\ \hline Reversed polarity \\ \hline Overvoltages \\ \hline Short-circuits \\ 4 \\ \hline 24 \\ \hline 30 \\ \hline 18/0.4 \\ \hline 12/0.2 \\ \hline 13 \\ \pm \ 1/4 \ \text{LSB} \\ \pm \ 1/2 \ \text{LSB} \\ \hline 18 \\ \hline \end{array}$
igital output upply nalogue output HOLD" and discrete igital input	Voltage Current Temperature error	Maximum voltage without Maximum current consumRange Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protectionMaximum residual rippleRange Maximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage State 1 U $\geq ; 1 \geq$ State 0 U $\leq ; 1 \leq$ Maximum conversion time Non-linearity Maximum error at 20 °C (* 0 - 10 V output 0 - 20 mA output	ed mode	V mA V Ω kΩ mV mA V MΩ Ω mV V	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity Overvoltages Short-circuits 4 24 24 30 18/0.4 12/0.2 20 ± 1/2 LSB ± 1/2 LSB 50 50	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ \hline 100 \\ \hline 100 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ \hline \text{Short-circuits} \\ \hline 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ \hline > 5 \\ \hline 500 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ \hline \text{Short-circuits} \\ \hline 4 \\ \hline 24 \\ \hline 30 \\ \hline 18/0.4 \\ \hline 12/0.2 \\ \hline 13 \\ \pm \ 1/4 \ \text{LSB} \\ \pm \ 1/2 \ \text{LSB} \\ \hline 18 \\ \hline 25 \\ \hline \end{array}$
igital output upply nalogue output HOLD" and discrete igital input	Voltage Current Temperature error coefficient	Maximum voltage without Maximum current consumRange Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protectionMaximum residual rippleRange Maximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Built-in protectionMaximum voltage State 1 U \geq ; I \geq State 0 U \leq ; I \leq Maximum conversion time Non-linearity Maximum error at 20 °C (° 0 - 10 V output 0 - 20 mA output \pm 10 V output	ed mode	V mA V V kΩ mV mA V MΩ Ω mV V MΩ Ω MΩ Ω V/mA V/mA V/mA V/mA V/mA V/mA V/mA V/mA	$\begin{array}{r} 24 \pm 20 \ \% \\ including ripple \\ \pm 30 \\ 55 \\ \hline \\ 0 - 10 \\ \pm 15 \\ 100 \\ 100 \\ \hline 10$	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ \hline 100 \\ \hline 100 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ Short-circuits \\ \hline 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ \hline 5 \\ 500 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ Short-circuits \\ \hline 4 \\ \hline 24 \\ \hline 30 \\ \hline 18/0.4 \\ \hline 12/0.2 \\ \hline 13 \\ \pm \ 1/4 \ \text{LSB} \\ \pm \ 1/2 \ \text{LSB} \\ \hline 18 \\ \hline 25 \\ \hline 35 \\ \end{array}$
igital output upply nalogue output HOLD" and discrete ligital input	Voltage Current Temperature error	Maximum voltage without Maximum current consumRangeMaximum voltage in serial d.c. output impedanceMinimum load impedance Built-in protectionMaximum residual rippleRange Maximum voltage in serial d.c. output impedanceMaximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage State 1 U \geq ; l \geq State 0 U \leq ; l \leq Maximum conversion time Non-linearity Maximum error at 20 °C (0 - 10 V output 0 - 20 mA output \pm 10 V output	ed mode	V mA V Ω kΩ mV mA V MΩ Ω mV V V V V V V V V V MA V/mA V/mA V/mA V/mA V/mA V/mA V/mA	24 ± 20 % including ripple ± 30 55 0 - 10 ± 15 100 100 Reversed polarity Overvoltages Short-circuits 4 0 - 20 ± 15 > 5 500 Reversed polarity Overvoltages Short-circuits 4 24 30 18/0.4 12/0.2 20 ± 1/2 LSB ± 1/2 LSB 50 50 100 39	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ \hline 100 \\ \hline 100 \\ \hline 100 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ Short-circuits \\ \hline 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ \hline 5 \\ 500 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ Short-circuits \\ \hline 4 \\ \hline 24 \\ \hline 24 \\ \hline 30 \\ \hline 18/0.4 \\ \hline 12/0.2 \\ \hline 13 \\ \pm \ 1/4 \ \text{LSB} \\ \pm \ 1/2 \ \text{LSB} \\ \hline 18 \\ \hline 25 \\ \hline 35 \\ \hline 2.441 \\ \hline \end{array}$
igital output	Voltage Current Temperature error coefficient	Maximum voltage without Maximum current consumRange Maximum voltage in serial d.c. output impedance Minimum load impedance Built-in protectionMaximum residual rippleRange Maximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Maximum load impedance Built-in protectionMaximum voltage in serial d.c. output impedance Built-in protectionMaximum voltage State 1 U \geq ; I \geq State 0 U \leq ; I \leq Maximum conversion time Non-linearity Maximum error at 20 °C (° 0 - 10 V output 0 - 20 mA output \pm 10 V output	ed mode	V mA V V kΩ mV mA V MΩ Ω mV V MΩ Ω MΩ Ω V/mA V/mA V/mA V/mA V/mA V/mA V/mA V/mA	$\begin{array}{r} 24 \pm 20 \ \% \\ including ripple \\ \pm 30 \\ 55 \\ \hline \\ 0 - 10 \\ \pm 15 \\ 100 \\ 100 \\ \hline 10$	$\begin{array}{c} 24 \pm 20 \ \% \\ \text{including ripple} \\ \pm \ 30 \\ \hline 70 \\ \hline 0 - 10 \\ \pm \ 15 \\ \hline 100 \\ \hline 100 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ Short-circuits \\ \hline 4 \\ \hline 0 - 20 \\ \pm \ 15 \\ \hline 5 \\ 500 \\ \hline \text{Reversed polarity} \\ Overvoltages \\ Short-circuits \\ \hline 4 \\ \hline 24 \\ \hline 30 \\ \hline 18/0.4 \\ \hline 12/0.2 \\ \hline 13 \\ \pm \ 1/4 \ \text{LSB} \\ \pm \ 1/2 \ \text{LSB} \\ \hline 18 \\ \hline 25 \\ \hline 35 \\ \end{array}$

Schneider Electric

Interfaces For analogue signals Digital/analogue converters

Compatibility with PLCs

ABA-6DA digital/analogue converters are compatible with the discrete signals of :

- Multifunction PLCs fitted with discrete output modules, type TSX DST882, DST1682, DST3292, DST2482, DST2472. Basic PLCs
 - TSX 1712028, TSX 1713428 with relay outputs,
 - TSX 1712002, TSX 1714002 with 24 V transistor outputs,
 - TSX 1722012, TSX 1724012 with 24 V transistor outputs,
 - TSX 1723428, TSX 1722028 with transistor inputs and relay outputs.
- Discrete I/O extensions for TSX 17 micro-PLCs :
 - Discrete extension blocks :
 - TSX DMF400, DMF401 with 24 V inputs and outputs,
 - TSX DMF242A, DMF342A with 24 V inputs and relay outputs.
- Communication interface system :
- AB2-MT284 modules, MT2814 with relay outputs.

Any PLC with ---- 24 V solid state and discrete relay outputs compatible with standard IEC 65A (CO22) class 1 inputs.

Operation

ABA-6DA modules convert analogue signals on command from the processing unit in the form of a discrete 24 V "HOLD" signal, as shown in the diagram below.

This mode of operation enables several modules to be connected in parallel to the same discrete outputs on the processing unit, thus creating a simple multiplexing of several analogue outputs.

Operating diagram

(1) Conversion time

The principles of analogue measurement must be observed, in particular :

- using a minimum cross-section of 0.22 mm²,
- only circuits with the same earth reference should be connected in the same multipair cable,

- measurement cables should be kept separate from discrete I/O cables especially those of relay outputs and power cables

- parallel routing should be avoided (there should be at least 20 cm between cables) and intersections should be made at right angles.

Cabling digital inputs

They are connected using a ribbon cable fitted with 2 HE 10 14-pin female connectors. Cabling interface ABE-6HE14M or ABE-6ADA14M is used to connect the individual wires of the cable to the screw terminals. Multiplexing several analogue outputs (scheme for analogue outputs with 12 bit converters).

Module 1

page 14008/5

Interfaces For analogue signals Digital/analogue converters

References

ABA-6DA80

Digital/an	alogue converters		
Digital input	Analogue output signal	Reference	Weight kg
8 bit	0 - 10 V	ABA-6DA81	0.056
	± 10 V	ABA-6DA80	0.056
	0 - 20 mA	ABA-6DA83	0.056
12 bit	0 - 10 V	ABA-6DA121	0.056
	± 10 V	ABA-6DA120	0.056
	0 - 20 mA	ABA-6DA123	0.056
Cabling a	accessories		

Sold in

lots of

1

2

Unit

reference

ABE-6HE14M

ABF-H14H020

ABC-6HE14F

ABF-C14N05

ABE-6ADA14M

Multiplexing baseplate for digital/analogue or analogue/digital converters (fitted with 4 HE 10 14-pin male connectors).

Cabling interface connector/screw terminals

Cable with connectors, length 20 cm

14-core pre-formed cable, length 5 m

HE10 14-pin female connector

Description

Dimensions, schemes

Schneider Electric

Telemecanique

14008_Ver4.00-EN.fm/5

Weight

0.075

0.008

0.005

0.520

0.150

kg

Interfaces For analogue signals Analogue threshold detectors

ABA-6SA threshold detectors are supplied in the form of compact modules, 22.5 mm wide.

The function of these modules is to monitor the level of a standard analogue signal (0-10 V; 0-20 mA) in relation to fixed preset thresholds. They provide 2 discrete signals representing the state of the signal in relation to these 2 thresholds.

These 2 discrete outputs can then be used by a processor (PLC ; computer ; etc) or for direct control of preactuators (contactors ; valves ; etc).

Composition

The ABA-6SA range comprises 2 families of products available in 2 versions, with or without liquid crystal display (LCD) :

Threshold detectors with solid state outputs

± 10 V

0-20 mA

These interfaces have two c 24 V transistor outputs for switching a current of up to 50 mA. These outputs are directly compatible with the inputs of a PLC. They must be interfaced for controlling preactuators.

The analogue input is not isolated from the discrete outputs and the module power supply.

Input range :

Threshold detectors with relay outputs

These interfaces have two relay outputs whose common is connected to the c 24 V module supply. These relays switch a current of up to 2 A. The outputs are directly compatible with the inputs of a PLC. They can directly control preactuators requiring up to 12 W.

The analogue input is differential and isolated from the discrete outputs and the module supply.

Input range :

± 10 V 0-20 mA

- Potentiometer for adjusting upper threshold "HI"
- Potentiometer for adjusting lower threshold "LO"
- Test points for measuring the signal and the thresholds

- using a digital voltmeter 3 1/2 digit liquid crystal display (LCD) Switch for selecting the value to be displayed
- 1 and 4 : input signal 2 : "LO" threshold
- 3 : "HI" threshold

Applications

The main use of analogue threshold detectors is in simple applications. They provide a low-cost solution to the provision of discrete regulation functions, pressure switch type functions, and where pressure regulators are used with analogue output sensors.

Characteristics

Interfaces For analogue signals Analogue threshold detectors

Conforming to standa	rds	IEC 947-1 ; VDE 0110b				
Product approvals					_	
Degree of protection Protective treatment		Conforming to IEC 529 (Protection against direct contact)			IP 20 "TC"	
Flame resistance		Conforming to IEC 696-2-1	Incandescent wire °C 850			
Shock resistance		Conforming to IEC 68-2-27	11 ms	gn 50. 10 (relay output)		
Vibration resistance		Conforming to IEC 68-2-6	1055 Hz	gn	5	
Resistance to electros	static					
discharges		Conforming to IEC 801-2	Level 3	kV	8	
Resistance to rapid tra	ansients	Conforming to IEC 801-4 Level 3	On power supply On I/O	kV kV	2 1	
Resistance to shock v	vaves	Conforming to IEC 255-4	Waveform 1.2/50 µs; 0.5 J	kV	0.5	
Cross-section which r		Flexible cable, no cable end	1-wire	mm ²	0.52.5	
be connected		Flexible cable with cable end	-	mm ²	0.222.5	
			2-wire	mm ²	<u>≤ 1.5</u>	
		Rigid cable	1-wire	mm ²	0.54	
Operating position		Apy/				
Ambient air temperatu	Iro	Any Operation	Mounted vertically, touching	°C	050	
around the device	110	Operation	Devices 2 cm apart	°Č	060	
		Storage		°C	- 40+ 85	
Insulation voltage		Terminals/fixing rails		kV	2	
Installation category		Conforming to IEC 947-1			П	
Degree of pollution		Conforming to IEC 947-1			2	
Mounting		Standard rails	714			
Reference					ABA-6SAppS 24 ± 20 %	ABA-6SAppR 24 ± 20 %
Supply		Supply voltage				
				V	including ripple	including ripple
		Maximum voltage without d	amage	V V	± 30	± 30
		Maximum voltage without d Maximum current	amage		± 30 7 + output current	± 30 30 + output current
		Maximum voltage without d	amage	V	± 30	± 30
Input	Voltago	Maximum voltage without d Maximum current Built-in protection	amage	V mA	± 30 7 + output current Reversed polarity	± 30 30 + output current Reversed polarity
Input	Voltage	Maximum voltage without d Maximum current Built-in protection Range	amage	V	± 30 7 + output current Reversed polarity ±10	± 30 30 + output current Reversed polarity ±10
Input	Voltage	Maximum voltage without d Maximum current Built-in protection Range Filtering	amage	V mA V	± 30 7 + output current Reversed polarity ±10 LC filtering	± 30 30 + output current Reversed polarity ±10 LC filtering
Input	Voltage	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband		V mA	± 30 7 + output current Reversed polarity ±10	± 30 30 + output current Reversed polarity ±10 LC filtering 100
Input	Voltage	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in common	on mode	V mA V Hz	± 30 7 + output current Reversed polarity ±10 LC filtering 1000	± 30 30 + output current Reversed polarity ±10 LC filtering
Input	Voltage	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband	on mode	V mA V Hz V	± 30 7 + output current Reversed polarity ±10 LC filtering 1000 -	± 30 30 + output current Reversed polarity ±10 LC filtering 100 ± 500
Input	Voltage	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in commu Maximum voltage in serial r	on mode	V mA V Hz V V	± 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50	± 30 30 + output current Reversed polarity ±10 LC filtering 100 ± 500 ± 50
Input	Voltage 	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in community Maximum voltage in serial r d.c. input impedance	on mode	V mA V Hz V V	± 30 7 + output current Reversed polarity ± 10 LC filtering 1000 - ± 50 ≥ 200	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200
Input		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comment Maximum voltage in serial r d.c. input impedance Built-in protection	on mode	V mA V Hz V V kΩ	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 − ±50 ≥ 200 Reversed polarity	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity
Input		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in common Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband	on mode node	V mA V Hz V V kΩ	$\begin{array}{c} \pm 30 \\ \hline 7 + output current \\ Reversed polarity \\ \pm 10 \\ LC filtering \\ 1000 \\ \hline \\ \pm 50 \\ \geq 200 \\ Reversed polarity \\ \hline 020 \\ LC filtering \\ 1000 \\ \end{array}$	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 500 ≥ 200 Reversed polarity 020 LC filtering 100
Input		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in common Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common Maximum voltage in common Maximum voltage Maximum voltage Built-in protection Range Filtering Passband Maximum voltage in common	on mode node	V mA V Hz V V kΩ mA Hz	\pm 30 7 + output current Reversed polarity \pm 10 LC filtering 1000 - \pm 50 ≥ 200 Reversed polarity 020 LC filtering 1000 -	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 500 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500
Input		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in comme	on mode node	V mA V Hz V V kΩ mA Hz	\pm 30 7 + output current Reversed polarity \pm 10 LC filtering 1000 − \pm 50 ≥ 200 Reversed polarity 020 LC filtering 1000 − \pm 5	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 500
Input		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in comme Maximum voltage in comme Maximum voltage in serial r d.c. input impedance	on mode node	V mA V Hz V V kΩ mA Hz	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 100	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 500 ± 500 ± 500 ± 500 ± 500 ± 500 ± 500 ± 100 ± 1000 ± 10000 ± 10000 ± 10000 ± 10000 ± 100000 ± 100000 ± 1000000 $\pm 1000000000000000000000000000000000000$
Input		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in comme	on mode node	V mA V Hz V V kΩ mA Hz	\pm 30 7 + output current Reversed polarity \pm 10 LC filtering 1000 − \pm 50 ≥ 200 Reversed polarity 020 LC filtering 1000 − \pm 5	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 500
-		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in common Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common Range Filtering Passband Maximum voltage in common Maximum voltage in common <td>on mode node</td> <td>V mA V Hz V V kΩ mA Hz</td> <td>\pm 30 7 + output current Reversed polarity \pm10 LC filtering 1000 - \pm 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - \pm 5 100</td> <td>± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 50 LC filtering 100 ± 500 ± 5 100 Reversed polarity</td>	on mode node	V mA V Hz V V kΩ mA Hz	\pm 30 7 + output current Reversed polarity \pm 10 LC filtering 1000 - \pm 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - \pm 5 100	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 50 LC filtering 100 ± 500 ± 5 100 Reversed polarity
-		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in comme Maximum voltage in comme Maximum voltage in serial r d.c. input impedance	on mode node	V mA V Hz V V kΩ mA Hz	\pm 30 7 + output current Reversed polarity \pm 10 LC filtering 1000 - \pm 50 \geq 200 Reversed polarity 020 LC filtering 1000 - \pm 5 100 Reversed polarity LCD 3 1/2 digits \pm 19.99 Sign + measurement	\pm 30 30 + output current Reversed polarity \pm 10 LC filtering 100 \pm 500 \pm 50 \geq 200 Reversed polarity 020 LC filtering 100 \pm 500 \pm 5 100 Reversed polarity LCD 3 1/2 digits \pm 19.9 Sign + measurement
-		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in comme Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits	on mode node	V mA V Hz V V kΩ mA Hz	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 500 ± 500 E 500 ± 500 E 500 E 500
-		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in comme Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays	on mode node	V mA V Hz V V kΩ mA Hz V Ω	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 50 LC filtering 100 ± 500 ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.9 Sign + measurement 5 ± 2 digits
-		Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in comme Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits	on mode node	V mA V Hz V V kΩ mA Hz V Ω	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 500 ± 500 E 500 ± 500 E 500 E 500
Digital display	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in common Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in common Range Filtering Passband Maximum voltage in common Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays Resolution	on mode node	V mA V Hz V V kΩ mA Hz V Ω mm	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 1000 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits 10 mV/10 μA	\pm 30 30 + output current Reversed polarity ±10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 5 100 EVERSED POLARITY LCD 3 1/2 digits ± 19.9 Sign + measurement 5 ± 2 digits 10 mV/10 μA
Digital display	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in comme Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays	on mode node	V mA V Hz V V kΩ mA Hz V Ω	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits	± 30 30 + output current Reversed polarity ± 10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 50 LC filtering 100 ± 500 ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.9 Sign + measurement 5 ± 2 digits
Digital display	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in serial r d.c. input impedance Built-in protection Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays Resolution Voltage range Current range Type	on mode node	V mA V Hz V V kΩ mA Hz V Ω mm	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 1000 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10	\pm 30 30 + output current Reversed polarity \pm 10 LC filtering 100 \pm 500 \pm 50 \geq 200 Reversed polarity 020 LC filtering 100 \pm 500 \pm 5 100 Reversed polarity LCD 3 1/2 digits \pm 19.9 Sign + measurement 5 \pm 2 digits 10 mV/10 μA \pm 10
Digital display	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in serial r d.c. input impedance Built-in protection Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays Resolution Voltage range Current range Type Voltage	on mode node	V mA V Hz V V kΩ mA Hz V Ω mm	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 Positive log transistor c 24	\pm 30 30 + output current Reversed polarity ±10 LC filtering 100 ± 500 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.9 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 N/O relay contact c 24
Digital display	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in serial r d.c. input impedance Built-in protection Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays Resolution Voltage range Current range Type	on mode node	V mA V Hz V V kΩ mA Hz V Ω mm	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 Positive log transistor	\pm 30 30 + output current Reversed polarity \pm 10 LC filtering 100 \pm 500 \pm 50 ≥ 200 Reversed polarity 020 LC filtering 100 \pm 50 \pm 5 100 Reversed polarity LCD 3 1/2 digits ± 19.5 Sign + measurement 5 \pm 2 digits 10 mV/10 μA \pm 10 020 N/O relay contact \mathbf{c} 24 2 resistive load
Digital display Threshold adjustment Discrete outputs	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in common Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in serial r d.c. input impedance Built-in protection Maximum voltage in common Vippe Indication Height of digits Precision of displays Resolution Voltage range Current range Type Voltage Maximum current	on mode node	V mA V Hz V V kΩ mA Hz V Ω mm	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 Positive log transistor c 24 0.05	\pm 30 30 + output current Reversed polarity \pm 10 LC filtering 100 \pm 500 \pm 50 \geq 200 Reversed polarity 020 LC filtering 100 \pm 500 \pm 5 100 Reversed polarity LCD 3 1/2 digits \pm 19.5 Sign + measurement 5 \pm 2 digits 10 mV/10 μA \pm 10 020 N/O relay contact \mathbf{C} 24 2 resistive load 0.1 inductive load
Digital display Threshold adjustment Discrete outputs	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in serial r d.c. input impedance Built-in protection Maximum voltage in comme Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays Resolution Voltage range Current range Type Voltage Maximum current	on mode node	V mA V Hz V V kΩ mA Hz V Ω mm	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 Positive log transistor c 24 0.05 20 mV/20 μA	\pm 30 30 + output current Reversed polarity ±10 LC filtering 100 ±500 ±50 ≥ 200 Reversed polarity 020 LC filtering 100 ±500 ±5 100 Reversed polarity LCD 3 1/2 digits ± 19.5 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 N/O relay contact c 24 2 resistive load 20 mV/20 μA
Digital display Threshold adjustment Discrete outputs	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in serial r d.c. input impedance Built-in protection Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays Resolution Voltage range Current range Type Voltage Maximum current Hysteresis Error in range at 20 °C	on mode node	V mA V Hz V V kΩ mA Hz V Ω mm	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ±50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ±5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 Positive log transistor c 24 0.05 20 mV/20 μA 10 mV/10 μA	\pm 30 30 + output current Reversed polarity ±10 LC filtering 100 ± 500 ± 50 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.9 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 N/O relay contact c 24 2 resistive load 0.1 inductive load 20 mV/20 μA 10 mV/10 μA
Digital display Threshold adjustment Discrete outputs	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in serial r d.c. input impedance Built-in protection Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays Resolution Voltage range Current range Type Voltage Maximum current Hysteresis Error in range at 20 °C Temperature error coefficier	on mode node	V mA V Hz V V kΩ mA Hz V Ω mm V v v v v v v v v v v v v v	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ±50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ±5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 Positive log transistor c 24 0.05 20 mV/20 μA 10 mV/10 μA 75	\pm 30 30 + output current Reversed polarity ±10 LC filtering 100 ± 500 ± 500 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.9 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 N/O relay contact c 24 2 resistive load 20 mV/20 μA 10 mV/10 μA 75
Digital display Threshold adjustment Discrete outputs Switching	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in serial r d.c. input impedance Built-in protection Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays Resolution Voltage range Current range Type Voltage Maximum current Hysteresis Error in range at 20 °C Temperature error coefficie Error in range at 60 °C	on mode node	V mA V Hz V V kΩ mA Hz V Ω Ω mm V v x M A	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ± 50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 Positive log transistor C 24 0.05 20 mV/20 μA 10 mV/10 μA 75 0.4 full scale	\pm 30 30 + output current Reversed polarity ±10 LC filtering 100 ± 500 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.9 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 N/O relay contact c 24 2 resistive load 0.1 inductive load 20 mV/20 μA 10 mV/10 μA 5 0.4 full scale
Input Digital display Threshold adjustment Discrete outputs Switching Isolation	Current	Maximum voltage without d Maximum current Built-in protection Range Filtering Passband Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Range Filtering Passband Maximum voltage in serial r d.c. input impedance Built-in protection Maximum voltage in comme Maximum voltage in serial r d.c. input impedance Built-in protection Type Indication Height of digits Precision of displays Resolution Voltage range Current range Type Voltage Maximum current Hysteresis Error in range at 20 °C Temperature error coefficier	on mode node	V mA V Hz V V kΩ mA Hz V Ω mm V v v v v v v v v v v v v v	\pm 30 7 + output current Reversed polarity ±10 LC filtering 1000 - ±50 ≥ 200 Reversed polarity 020 LC filtering 1000 - ±5 100 Reversed polarity LCD 3 1/2 digits ± 19.99 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 Positive log transistor c 24 0.05 20 mV/20 μA 10 mV/10 μA 75	\pm 30 30 + output current Reversed polarity ±10 LC filtering 100 ± 500 ≥ 200 Reversed polarity 020 LC filtering 100 ± 500 ± 5 100 Reversed polarity LCD 3 1/2 digits ± 19.9 Sign + measurement 5 ± 2 digits 10 mV/10 μA ± 10 020 N/O relay contact c 24 2 resistive load 20 mV/20 μA 10 mV/10 μA 75

Schneider Electric

Compatibility, operation

Interfaces For analogue signals Analogue threshold detectors

Compatibility with PLC inputs

ABA-6SA analogue threshold detectors are compatible with Telemecanique PLCs :

- **p** Multifunction PLCs :
 - TSX 47, TSX 67 or TSX 87 fitted with an input module, - TSX DET812, DET1612 or DET3212.
- ISA DETOTZ, DETTOTZ OF DETS
- p Basic TSX 1710 micro PLCs
- p Basic TSX 1722028, 1723428, 1722012, 1724012 micro PLCs
- p Discrete I/O extensions : for TSX 17 micro PLCs :
 - discrete extension block : TSX DMF242A, DMF342A, DMF400, DMF401,
 discrete extension module : TSX DEF812.

ABA-6SA detectors are also compatible with any PLC which has class 1 discrete inputs conforming to IEC 65A (CO22).

Operation

The setpoint thresholds are set on the module using 2 potentiometers. Adjustment is made easy by access to the setpoint value at 2 test points on the front panel (version without display) or via the 3 1/2 digit display. Data available on the test points or the display is selected using a switch.

A digital voltmeter set to c 2 volts is used for performing measurements at the test points.

Operating diagram

References : page 14009/5

References, dimensions, schemes

Interfaces For analogue signals Analogue threshold detectors

ABA-6SA01S

Туре	Input signal	C 24 V discrete outputs	I/O isolation	Reference	Weight kg
Without display	± 10 V	Solid state	Without	ABA-6SA00S	0.065
		Relay	With	ABA-6SA00R	0.065
	0-20 mA	Solid state	Without	ABA-6SA30S	0.065
		Relay	With	ABA-6SA30R	0.065
With display (LCD display)	± 10 V	Solid state	Without	ABA-6SA01S	0.065
		Relay	With	ABA-6SA01R	0.065
	0-20 mA	Solid state	Without	ABA-6SA31S	0.065
		Relay	With	ABA-6SA31R	0.065

Dimension, schemes

Dimension ABA-6SA**pp**S/R

Circuit diagrams ABA-6SA**pp**S

Presentation : page 14009/2 Characteristics : page 14009/3 Compatibility : page 14009/4

Schneider Electric

Interfaces For analogue signals Reference sources for potentiometers

Presentation

ABA-6LP voltage reference sources for potentiometers are supplied in the form of compact modules, 16.5 mm wide.

The function of these modules is to generate, from a - 24 V voltage, a stable reference voltage (or current) to supply a potentiometer.

These modules are characterised by a high level of stability compared to variation in the ambient temperature and fluctuations in the supply voltage.

Applications

ABA-6LP voltage reference sources are used with precision potentiometers for setpoint displays, or detection of linear or rotational positions. There are 2 versions in the range :

- a 10 V \pm 0.5 V voltage source a 10 V \pm 0.5 V voltage source plus a 20 mA \pm 1 mA current source.
- 1 Potentiometer for adjustment of voltage or current to compensate for the imprecision of the external potentiometer and adjust the full scale.

Environment

Conforming to standards	IEC 947-1 ; VDE 0110b			
Product approvals				-
Degree of protection	Conforming to IEC 529 (prot	tection against direct contact)		IP 20
Protective treatment				"TC"
Flame resistance	Conforming to IEC 696-2-1	Incandescent wire	°C	850
		Semi-sinusoidal waves		
Shock resistance	Conforming to IEC 68-2-27	11 ms	gn	50
Vibration resistance	Conforming to IEC 68-2-6	1055 Hz	gn	5
Resistance to electrostatic	-			
discharges	Conforming to IEC 801-2	Level 2	kV	4
Resistance to rapid transients	Conforming to IEC 801-4	On power supply	kV	2
·	Level 3	On I/O	kV	1
Resistance to shock waves	Conforming to IEC 255-4	Waveforms 1.2/50 µs ; 0.5 J	kV	0.5
		····· ································		
Cross-sections which may	Flexible cable, no cable end	1-wire	mm ²	0.52.5
be connected	Flexible cable with cable end		mm ²	0.222.5
		2-wire	mm ²	≤ 1.5
	Rigid cable	1-wire	mm ²	0.54
Operating position		n derating, please consult you		
operating position	Any, (i or nonzontal position	r derading, please consult you	ii itegion	
Ambient air temperature	Operation	Mounted vertically, touching	°C	See curve page 14010/3
around the device	Operation	Devices 2 cm apart	°C	See curve page 14010/3
around the device	Storage	Devices 2 cm apart	°C	- 40+ 85
Inculation voltage			kV	
Insulation voltage	Terminals/fixing rails		ĸv	2
Installation category	Conforming to IEC 947-1			
Degree of pollution	Conforming to IEC 947-1			2
••				
Mounting	Standard rails	~ 25 [2		

Special characteristics

Reference				ABA-6LP01	ABA-6LP12
Power supply			V	1530 300	24 ± 20 % 30
		Maximum current Built-in protection	mA	10 + output current Reversed polarity	10 + output current Reversed polarity
Output	Voltage	Rated voltage 1 Voltage adjustment range 1 Maximum current 1 Effect of the load 1	V <u>—</u> V mA % ppm/°K	10 ± 0.5 30 (see curve p. 14010/3) ≤ 1	10 ± 0.5 30 (see curve p. 14010/3) ≤ 1 30
	Current	Rated current Current adjustment range Load Effect of 0 to 500 Ω load	mA mA Ω % ppm/°K	- - - -	20 (see curve p. 14010/3) ± 1 ≤ 500 ≤ 0.25 full scale 40

page 14010/3

References, dimensions, schemes, curves

Interfaces For analogue signals Reference sources for potentiometers

	=		Reference	Weigh
current supply	current output voltage	current		
V	V	mA		kç
1530	10	-	ABA-6LP01	0.070
24	10	20	ABA-6LP12	0.070

ABA-6LP12

Dimensions, schemes, curves

Dimensions

Circuit diagrams and derating curves as a function of the ambient temperature (vertical mounting) ABA-6LP01

page 14010/2

Schneider Electric

